國立臺北商業技術學院98學年度研究所碩士班考試入學試題

	准考 超 颁 构 · L_ L_ L_		【硕	下 年 日	行項	めノ
資訊科研所	筆試科目:離散數學	共	2	頁,	第	1 頁
1. 注意事項 2.	本科目合計 100 分,答錯不倒扣。 請於答案卷上依序作答,並標註清楚題號(含小題) 老字譜與答案卷及試題一併繳回。	•				

- ▶ 1. (20%) True / False Questions:
 - (1) A path is a walk in which all edges are distinct.
 - (2) A cycle is a closed trail with no repeated vertices.
 - (3) In any graph with more than one vertex, there must exist two vertices of the same degree.
 - (4) A graph is bipartite if and only if it contains no odd cycle.
 - (5) Every subgraph of a tree is a tree.
 - (6) If G is a connected graph such that every two vertices of G are connected by a unique path, then G must be a tree.
 - (7) If A is the adjacency matrix of the complete graph on five vertices labeled by 1,2,3,4,5, then the (5,3) entry of A^2 is 4.
 - (8) Let D be a digraph such that the indegree equals the outdegree for every vertex of G. Then D is Eulerian.
 - (9) If a relation is both symmetric and transitive, then it is reflexive.
 - (10) Define a relation \sim on the set of all people in the world by $a \sim b$ if a and b were born in the same year. Then \sim is an equivalence relation.
- \triangleright 2. (10%) Which of the following sequence are graphical (i.e., there exists a simple graph whose degree sequence is the one specified)? In each case, either construct a graph, or explain why no graph exists.
- (a) 3,3,2,2,1,1 (b) 6,5,5,4,3,3,3,2,2
- ▶ 3. (10%) Let $X = \{\{a\}, \{a,b\}, \{a,b,c\}, \{a,b,c,d\}, \{a,c\}, \{c,d\}\}$ and define $R = \{(U,V): U, V \in X \text{ and } U \subseteq V\}$. Clearly, R is a partial ordering.
 - (a) Draw the Hasse diagram of the partial order.
 - (b) List all minimal, minimum, maximal, and maximum elements.
- ▶ 4. (10%) Solve the recursive formula:

$$T(n) = \begin{cases} 1 & \text{if } n \leq 1 \\ 2T(n/2) + n & \text{otherwise.} \end{cases}$$

國立臺北商業技術學院98學年度研究所碩士班考試入學試題

准考證號碼	:		(請考生自行填寫
-------	---	--	----------

資訊科研所

筆試科目:離散數學

共 2 頁,第2頁

▶ 5. 選擇題 (每題三分)

- (1) How many items are there in the expansion of $(3x + 4y + 2z + 7w)^{10}$? (A) 286 (B) 334 (C) 122 (D) 684
- (2) How many ways can one arrange four 1's and four -1's so that all eight partial sums (starting with the first summand) are nonnegative? (A) 88 (B) 64 (C) 32 (D) 14
- (3) For any primitive statements p, q, r, any tautology T_0 , and any contradiction F_0 , which statement is wrong? (A) $(p \land q) \rightarrow r \Leftrightarrow \neg (p \land q) \lor r (B) [p \land (p \rightarrow q)] \rightarrow q \Leftrightarrow T_0 (C) (p \lor q) \land \neg (\neg p \land q) \Leftrightarrow p \lor F_0 (D) \neg [[(p \lor q) \land r] \lor \neg q] \Leftrightarrow q \lor r$
- (4) For a prescribed universe and any open statements p(x), q(x) in the variable x, which statement is wrong? (A) $\exists x [p(x) \land q(x)] \Leftrightarrow [\exists x p(x) \land \exists x q(x)]$ (B) $\exists x [p(x) \lor q(x)] \Leftrightarrow [\exists x p(x) \lor \exists x q(x)]$ (C) $\forall x [p(x) \land q(x)] \Leftrightarrow [\forall x p(x) \land \forall x q(x)]$ (D) $[\forall x p(x) \lor \forall x q(x)] \Rightarrow \forall x [p(x) \lor q(x)]$
- (5) For any universe \mathcal{R} and any sets $A, B \subseteq \mathcal{R}$, the *complement* of A is denoted by $\sim A = \mathcal{R} A$. Suppose that we define $A \triangle B = \{x \mid x \in A \cup B \land x \notin A \cap B\}$. Which following item is equivalent with $\sim (A \triangle B)$? (A) $\sim A \triangle \sim B$ (B) $A \triangle \sim B$ (C) $\sim A \cap B$ (D) $A \cup \sim B$
- (6) Consider the following program segment, where i, j, and k are integer variables.

for
$$i := 1$$
 to 20 do
for $j := 1$ to i do
for $k := 1$ to j do
print $(i * j + k)$

How many times is the print statement executed in this program segment? (A) 2644 (B) 6454 (C) 1540 (D) 3654

- (7) For what base do we find that 251 + 445 = 1026? (A) 12 (B) 7 (C) 8 (D) 10
- (8) For $a, b, c, d \in \mathbb{Z}^+$, which statement is wrong? (A) if $a \ge b$, $\gcd(a, b) = \gcd(a-b, b)$ (B) the equation ax + by = c has an integer solution x if and only if $\gcd(a, b)$ divides c (C) cd = a and $\gcd(c, d) = b$ if and only if $b^2|a$ (D) $\exists a, b \ a(a+1)(a+2) = b^2$
- (9) Let A, B be finite sets and |A| = 7, |B| = 4. How many onto functions $f: A \rightarrow B$ can be occurred? (A) 8400 (B) 7640 (C) 3548 (D) 1286
- (10) Let $A = \{a, b, c\}$. If function $f: A \times A \rightarrow A$, how many closed binary operations on A have b as the identity? (A) 27 (B) 48 (C) 81 (D) 96

▶ 6. 證明題 (毎題十分)

- (1) Please use the principle of mathematical induction to prove $5n < n^2 10$ for $n \ge 7$.
- (2) For any $n \in \mathbb{Z}^+$, prove that the integers 8n + 3 and 5n + 2 are relatively prime.

試題結束